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A fast algorithm for computing the motion of solid particles suspended in fluid is presented. The motion of
solid particles suspended in Stokes flow can be calculated without fully calculating the fluid motion. When the
steady-state simulation is sufficient, this algorithm can greatly accelerate the simulation of solid particle
suspension in Stokes flow.
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In computational fluid dynamics �CFD� the motion of the
particles suspended in fluid is simulated by Navier-Stokes
�N-S� equation coupled with Newtonian equation of motion.
In each time step of the simulation, the state of the fluid and
the configuration of the solid particles are alternately up-
dated. In the Stokes flow, as Reynolds number Re→0, �1,2�
both the fluid inertia and the solid particle inertia are negli-
gible, and the governing equations become −�p+��2u=0
�the Stokes equation� and � ·u=0 �the continuous equation�
for the fluid and F=0 �the force-free condition� for the solid
particles �1,2�, where � is the viscosity of the fluid, p and u
are the local pressure and local velocity of the fluid, respec-
tively, and F is the total force on the solid particle. Finite
element method �FEM� is widely used for a steady-state
simulation because a relatively large time step size can be
selected to accelerate the simulation even though the remesh-
ing process may cost a large portion in the computational
time. In the recent two decades the lattice-Boltzmann method
�LBM� has become a choice of CFD method. Combining
lattice-Boltzmann equation �LBE� and Newtonian equation
of motion, the motion of the fluid and the solid particles
suspended in fluid can be simulated effectively �3–10�. How-
ever, LBE solves time-dependent flow, and the fluid state and
the motion of the solid particles are updated using very small
time steps. For situations where steady-state simulations are
sufficient, LBM becomes too expensive in computational
time. Attempts to obtain the steady state of fluid in LBM so
far are in two ways. One way is the time-dependent LBE
approach, where the time-dependent LBE is continuously
solved with solid particles unmoved in the fluid, until a
steady state is obtained �11�, while the second way is the
time-independent-matrix approach, in which a matrix equa-
tion, converted from the steady-state LBE, is solved using
standard matrix methods �12�.

In this Rapid communication a fast algorithm for solving
steady state of LBE in Stokes flow is presented. A back-
ground flow is calculated and saved as a database before the
simulation. Then the velocity of solid particle in each time
step can be very efficiently calculated by using the back-
ground flow. The scheme is applicable to a suspension of
solid particles, as well as for just one particle. For simplicity
only D2Q9 model �4� in a L�H rectangular domain will be
discussed. Periodic boundary condition is applied to x direc-

tion, and a simple shear flow is generated by two parallel
walls moving in opposite directions on the top and bottom,
respectively. Generalization to other models in two-
dimensional �2D� or three-dimensional �3D� cases is straight-
forward.

In LBM the state of the fluid is characterized by the dis-
tribution function, �k�x , t� at time t, at node x, with velocity
ek defined as �0,0�, �1,0�, �1,1�, �0,1�, �−1,1�, �−1,0�,
�−1,−1�, �0,−1�, and �1,−1� for k=0–8, respectively. The
equilibrium distribution function for zero Reynolds number
flow is �5�

�k
eq = wk��1 + 3ek · u� . �1�

The coefficient wk is 4/9 for k=0, 1/9 for k=1, 3, 5, 7, and
1/36 for k=2, 4, 6, 8, respectively. The density ��x , t� and
velocity u�x , t� at a fluid node is represented as ��x , t�
=�k=0

8 �k�x , t� and ��x , t�u�x , t�=�k=0
8 ek�k�x , t�, respectively.

The local density can be expressed as ��x , t�=�0+���x , t�,
with the global density �0= �1 /Nf��x��x , t� a constant, where
Nf =LH is the total number of fluid nodes, and the summa-
tion is taken over every node. Denoting �k=wk�0+��k, we
have

���x,t� = �
k=0

8

��k�x,t� ,

�2�

�u�x,t� = �
k=0

8

ek��k�x,t� .

Adjacent fluid nodes are connected by links, along the direc-
tions of the velocities ek. The fluid particles may move only
along these links. The evolution of the distribution function
is determined by LBE

�k
��x,t� = �k�x,t� − �1/����k�x,t� − �k

eq�x,t�� ,

�3�
�k�x + ek,t + 1� = �k

��x,t� ,

where � is the relaxation time scale, which is related to fluid
kinematic viscosity �= �2�−1� /6. Since � is not an important
parameter for zero-Reynolds number flow �see �12� and ref-
erences therein�, we may take �=1. The advantage of this
choice is that the after-collision status is simply the equilib-
rium state, and Eqs. �3� and �1� are reduced to*eding.simufast@gmail.com
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��k
��x,t� = ��k

eq�x,t� ,

�4�
��k�x + ek,t + 1� = ��k

��x,t� ,

and

��k
eq�x,t� = wk��� + 3�ek · u� , �5�

respectively. At a node adjacent to a wall,

��k�x + ek,t + 1� = ��k�
� �x,t� − 6wk�0ub · ek�, �6�

where ub is the velocity of the wall �5�. In this Rapid Com-
munication k� always denotes the opposite direction of k.

The pure fluid flow without disturbance from moving
solid particles is called the background flow. In D2Q9 model,
the state of fluid can be denoted by a column vector 	 �and
	�� with Nc=9Nf elements, standing for component ��k
�and ��k

�� at every node in the whole domain. If the veloci-
ties of the walls are utop and ubottom, respectively, combining
Eqs. �4� and �6�, the column vectors 	 at time t and t+1 are
related as

	�t + 1� = T	��t� + WUw, �7�

where T is a Nc�Nc translation matrix, W is a Nc�2 matrix,
and Uw= �utop ,ubottom�T. The state of fluid can also be ex-
pressed by a column vector M in the fluid phase space,
which is a Nm=3Nf dimensional space spanned by the local
density variation and momentum ��� ,�ux ,�uy� at each node.
The vectors 	 �and 	�� and M are related by M =E+	 and
	�=EM, where E and E+ are Nc�Nm and Nm�Nc block-
diagonal matrices, with each block defined by Eqs. �2� and
�5�, respectively �12�. Equation �7� can be written as

M�t + 1� = E+TEM�t� + E+WUw. �8�

The steady state M =M�t→
� satisfies

�I − E+TE�M = E+WUw. �9�

Equation �9� cannot be solved because the coefficient matrix
I−E+TE is singular. The singularity comes from the undeter-
mined value of the total fluid mass in the system �12�. The
mass conservation condition ���=0 �the summation over Nf
nodes� can be expressed by JM =0, where J is a Nm�Nm
matrix with only Nf nonzero elements which are equal to
one. These nonzero elements are on the first row, at the col-
umns associated with �� at each node. The steady state can
now be determined by

AM = E+WUw, �10�

where A is a Nm�Nm matrix

A = I − E+TE + J . �11�

The solution of Eq. �10� is M0=M0
RUw, where

M0
R = A−1E+W . �12�

Both A−1 and M0
R are called the background matrices.

If there are some solid particles suspended in fluid, some
lattice nodes might be covered by solid particle. To keep the
dimension of the matrices A and M unchanged, the elements
associated with the covered nodes should not be removed

from the matrices. However, the interaction between the
solid surface and the covered nodes would not be counted. A
link connecting a fluid node, which is outside of the solid
particle and a node covered by the solid particle, is called a
boundary link. The bounce-back rule �Eq. �6�� applies on
each boundary link, and Eq. �8� then becomes

M�t + 1� = E+TpEM�t� + E+SV + E+WUw, �13�

where matrix Tp is different from T only at the elements
associated with the boundary links. The matrix S is a
Nc�3Np matrix determined by the second term in the
bounce-back rule �Eq. �6��. The E and E+ are same with or
without particles inside the flow.

In LBM the force on solid bodies can be easily calculated
in finite schemes. Taking summation of the forces on each
link �5�

fk�xi�ek� = �2��k�
� �xi� − 6wk�0ub · ek��ek�, �14�

we have the total force and torques on solid particles in the
matrix form as

F = QEM + RV + Fext. �15�

Both V and F are row vectors with 3Np elements. V is the
velocity and angular velocity of each solid particle, while F
is the force and torque on each solid particle. In Eq. �15� the
3Np�Nc matrix Q and the 3Np�3Np matrix R are deter-
mined by the first and second terms on the right-hand side of
Eq. �14�, respectively, while Fext is the external force and
torque on the solid particle.

For Stokes flow the force-free and torque-free condition
gives �1,2�

V = − R−1�QEM + Fext� . �16�

From Eqs. �11�, �13�, and �16� the steady state M will be
determined by

�A + A1�M = E+WUw − E+SR−1Fext, �17�

with

A1 = E+�T − Tp�E + E+SR−1QE + Jp. �18�

The additional Nm�Nm matrix Jp is defined as that JpM =0
contains Np independent constraints for Np solid particles.
Each constraint restricts the total mass at nodes covered by a
solid particle to be a constant.

Since the Newtonian equation of motion is coupled with
LBE, it is generally believed that the motion of the solid
particles could not be calculated unless the motion of the
fluid is simultaneously calculated. However, with splitting
the coefficients matrix as A+A1, the matrix A1, after rows
reordering, can be converted to a block matrix, with only the
first block containing nonzero elements and all other blocks
equal to zero. This feature of matrix A1 leads to a fast algo-
rithm.

The nodes at both ends of the boundary link are called
boundary nodes. Except for boundary nodes all other nodes
covered by the solid particle is called inside nodes. Nonzero
elements in the matrices E+�T−Tp�E and E+SR−1QE come
from the boundary nodes, while any nonzero element in the
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matrix Jp come from the element �� at either a boundary
node or an inside node. If there are bj boundary nodes
and dj inside nodes for solid particle j, the components
��� ,�ux ,�uy� at each boundary node and �� at each
inside node will span a Ns dimensional space, where
Ns=�nj ���3bj +dj�. This is a subspace of the fluid phase
space, called the reduced phase space. Then matrix A1, after
rows reordering, can be written as A1=BCD, where D is a
Ns�Nm projection matrix with Dij =�ij, B=DT, and C is a
Ns�Ns matrix in the reduced phase space. Noting that DB

= Î is the Ns�Ns identity matrix, while BD is a Nm�Nm

block matrix, with the first block equal to Î and all other
blocks equal to zero, Eq. �17� then becomes

�A + BCD�M = E+WUw − E+SR−1Fext. �19�

According to the binomial inverse theorem �13�

�A + BCD�−1 = A−1 − A−1B�C−1 + DA−1B�−1DA−1,

we have

M = �I + A−1BĤD��M0
RUw − A−1E+SR−1Fext� , �20�

where Ĥ=−�Î+CÂr�−1C and Âr=DA−1B. Denoting Q̂=QEB

and M̂ =DM, the velocity V can be written as

V = − R−1Q̂M̂ − R−1Fext, �21�

and noting E+S=BDE+S, M̂ reads as

M̂ = �Î + ÂrĤ��M̂0
RUw − ÂrŜR−1Fext� , �22�

where M̂0
R=DM0

R and Ŝ=DE+S. Matrices Âr and M̂0
R can be

retrieved from background matrices A−1 and M0
R, respec-

tively. Now M̂ in the reduced phase space can be calculated
from Eq. �22�, and V can be obtained from Eq. �21� without
full information of the fluid state M. In the calculation we

need to invert only an Ns�Ns matrix Î+CÂr, instead of an
Nm�Nm matrix. Compared to full inverting the coefficient
matrix, the speedup is proportional to �Nm /Ns�3. Because
Ns /Nm is roughly the area �in 2D� or the volume �3D� frac-
tion, this algorithm will result in greatly accelerated simula-
tion speed for a dilute suspension.

In LBM the hydrodynamic force between two surfaces
are calculated by patching the leading term of the
lubrication force onto the force determined by the
lattice-Boltzmann model �3�. For simplicity we consider the
lubrication force between two circles. This method can be
extended to other particle shapes. According to the
lubrication theory the leading term of the lubrication
force between the two closely spaced circles i and j is �14�
fi

lub=−f j
lub=−�ij�uij ·gij�gij, where fi

lub is the lubrication force
on particle i, uij is the relative velocity between the two
surfaces, and gij is the unit vector from the contact point on
surface i to the contact point on surface j. The coefficient
�ij =1rc

3/2��ij
−3/2�1+2�ij /rc�−�−3/2�1+2� /rc�� if �ij �� or

�ij =0 otherwise. rc=ri+rj, where ri and rj are the radius of
the two circles, respectively. The two constants here are
1=�2� /16�0.277 68 and 2=3.85, respectively. �=2 is
the cut-off range. Then the total lubrication force is

calculated as Flub=RlubV, where Rlub is a 3Np�3Np matrix.
When lubrication force is included the matrix R−1 in Eqs.
�21� and �22� should be replaced by �R+Rlub�−1.

The positions and the orientations of the solid particles
are expressed by a vector X with 3Np components. For given
X, all the boundary links can be figured out. Then V, as a
function of X, is determined by Eq. �21�. Finally, the position
of solid particle at the next time step could be obtained by
solving the equation dX /dt=V�X� with any numerical solver,
such as Euler’s method or Runge-Kutta method.

The algorithm presented here is tested by two examples
with a computational domain L�H=240�120. Background
matrices A−1 and M0

R are calculated before the simulation.

For each test the matrices Âr and M̂0
R are retrieved from the

same set of background matrices. Although A is an
Nm�Nm matrix because the computational domain is trans-
lational invariant in x direction, we need only calculate 3H
columns of the inverse matrix. This is a small portion of A−1

and takes only about 250 MB storage.
The first test is the rotation of an elliptic cylinder in shear

flow. According to �15� the angular velocity of the elliptical
cylinder is given by

d�

dt
=

G

b2 + c2 �b2 cos2 � + c2 sin2 �� , �23�

where � is the angle of the rotation and G is the shear rate.
The calculation is carried out for an elliptical cylinder with
principal semiaxes b=4 and c=8, respectively. With the ratio
H /c=15 the wall effect is negligible �14�. The numerical
results obtained by the current method are compared to the
theoretical prediction, as shown in Fig. 1. They are in agree-
ment.

A crucial problem for testing the validity of the lubrica-
tion force modeling is the motion of a chain of closely
spaced particles with a single force along the axis of the
chain applied on one particle at the end. The motion of a
chain of spheres and a 3D slender body have been studied by
Stokesian dynamics �1�. The results show that the single
force is sufficient to move the entire chain, as if it were a
slender body, and that the dependence of the drag coeffi-
cients V /F on the aspect ratio �defined as the total number of
the spheres in the chain or the length-to-width ratio of the
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FIG. 1. Rotation of an elliptical cylinder in shear flow. The
simulation results �dotted line� are compared with the analytical
prediction �solid line� �Eq. �23��.
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slender body� display similar scaling behavior. However, no
LBM simulation to date gives qualitatively correct result. We
consider 2D motion of a chain of circles of radius r=5.0 with
center-to-center space dc=10.1. The results for total number
of circles Np=1 to 6 as well as a slender body with various
aspect ratios are shown in Fig. 2. It is significant that the
values of the drag coefficients decrease as the aspect ratio

increases with a similar scaling behavior for both cases. The
difference between these two curves may be explained by
their different shapes. If the lubrication force were not mod-
eled correctly in this example, then the particles would over-
lap with one another at the next time step, which is not
physically acceptable.

On summary, we developed a fast algorithm to simulate
the particle suspension. This algorithm exactly solves steady-
state LBE and does not introduce any further approximation.
The relevant parameter determining the speedup is the ratio
Ns /Nm. For the tests in this Rapid Communication, with
Ns�500 and Nm=86 400, the ratio Ns /Nm�10−2. Hence the
calculation speed is approximately 106 times faster. On the
other hand, to display the snapshot of the fluid flow at a
desired moment instead of tracing the fluid motion step by
step, it is much faster to calculate the fluid state from
Eq. �20� after the motion of the solid particles is already
discovered.
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Dr. L. Ding for their kind help and inspiring discussion and
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work.
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FIG. 2. The drag coefficient of a chain of circles �dashed line�
and a slender body �solid line� vs the aspect ratio.
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